Product-to-product differences in plasma concentration-time curves from recommended doses of prolonged-action preparations of theophylline

RS Summers

Summary
The author conducted drug plasma level determinations on four slow-release theophylline products using doses which would be recommended for adult patients. The study demonstrated an inequivalence amongst the preparations in drug levels achieved and in predictability.

KEYWORDS: Product Surveillance, Postmarketing; Theophylline.

INTRODUCTION
Oral prolonged-action theophylline preparations are playing an increasingly important part in the effective treatment of asthma. The drug's optimal bronchodilating activity occurs at plasma levels of 10-20 mcg/ml. One problem is that the drug has a narrow therapeutic window, with a lack of effect being
Product-to-product differences

<table>
<thead>
<tr>
<th>Product</th>
<th>Active Ingredient</th>
<th>Labelled Strength (mg)</th>
<th>Theophylline Equivalent (mg)</th>
<th>Dose administered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euphyllin Retard</td>
<td>Aminophylline</td>
<td>350</td>
<td>280</td>
<td>2 x 350 mg tablets (560 mg)</td>
</tr>
<tr>
<td>Microphyllin</td>
<td>Theophylline</td>
<td>250</td>
<td>250</td>
<td>2 x 250 mg capsules (500 mg)</td>
</tr>
<tr>
<td>Phyllocontin</td>
<td>Aminophylline</td>
<td>225</td>
<td>180</td>
<td>2 x 225 mg tablets (360 mg)</td>
</tr>
<tr>
<td>Theo-Dur</td>
<td>Theophylline</td>
<td>200</td>
<td>200</td>
<td>2 x 200 mg tablets (400 mg)</td>
</tr>
</tbody>
</table>

CHART I
PRODUCTS, ACTIVE INGREDIENTS AND DOSES OF FOUR PROLONGED-ACTION THEOPHYLLINE PREPARATIONS

demonstrated below 8 mcg/ml, and toxicity appearing from levels sometimes as low as 15 mcg/ml. It is therefore important that prescribers have confidence that appropriate levels will be achieved from their prescribed doses, no matter which preparation they use.

Currently, there is a variety of prolonged-action theophylline and aminophylline single active ingredient preparations on the market. For the above reasons, we conducted drug plasma level determinations on four products* using doses which would be recommended for adult patients.

SUBJECTS
The 8 subjects in the study were healthy Caucasian males with an average age of 28.4 (range 25-37 years) and an average body mass of 75.1 (range 63-85 kg). Their blood counts, liver function, ECGs, urea and electrolytes were all normal. All subjects were non-smokers. They were not taking other medication. They refrained from ingesting xanthine-containing beverages and alcohol for 48 hours prior to and during each study and fasted for 12 hours prior to drug administration. They received a standard breakfast, lunch and supper on each day of the study. The breakfast was given 30 minutes after ingestion of the drug.

METHOD
On successive Tuesdays the following procedure was performed on each of the 8 subjects:
1. A blood sample was taken
2. The appropriate dose of a particular preparation was swallowed with 200 ml of water (See Chart 1 for doses of products administered)
3. Blood samples were taken at one hour, 2, 3, 4, 6, 8, 10, 12, 24 and 30 hours after zero time
4. The samples were centrifuged in batches within one hour of the last sample for each time being taken
5. Drug plasma concentrations were immediately determined on a Beckman ICS II (Immuno-Chemistry System) instrument, which has been shown to give results comparable to EMIT and HPLC.

The process was repeated for each of the test preparations as well as with 180 mg of Anhydrous Theophylline in 200 ml of water as a standard to determine whether there were any abnormalities in drug absorption by the subjects.

The mean plasma levels for each time period were calculated for each product, as were the 90% confidence limits.

RESULTS
The results are graphically represented in GRAPHS 1-6. GRAPH 1 contains the plasma level vs time curves for the 4 test preparations and standard. GRAPHS 2-6 show the plasma concentrations and the 90% upper and lower confidence limits for the standard solution and the respective products.

A. CONCENTRATION CURVES
The difference among products and the short duration of action of the standard solution are clearly shown in GRAPH 1.

Product-to-product differences

1. **Euphyllin Retard (560 mg theophylline)**: This product gave a fairly consistent curve from ±4-12 hours. Unfortunately the levels of theophylline are particularly low (4.5-6 mcg/ml) for the administered dose (N.B: We initially carried out plasma level determinations with a single 350 mg tablet containing 280 mg theophylline. The drug concentrations were so low with the single tablet dose that we repeated the determination as above with 2 tablets.)

2. **Microphyllin (500 mg theophylline)**: This preparation manifested the highest consistent plasma levels of drug (between 8 and 10 mcg/ml from 3½-11½ hours) from a fairly high dose of drug.

3. **Phyllocontin (360 mg theophylline)**: This tablet exhibited a rapid onset of action with drug level after the first hour (6.3 mcg/ml) close to that for the aqueous solution (6.7 mcg/ml). Drug concentrations remained consistent, but relatively low, until ± 11 hours from zero time.

4. **Theo-Dur (400 mg theophylline)**: The concentration curve for this product remained fairly consistent from 1-8 hours, after which it showed a surge.

B. 90% CONFIDENCE LIMITS

We performed this calculation to ascertain whether the levels from the different products would be predictable in similar subjects and hence justify prescriber confidence in general guidelines for dosing, compared with the standard solution (GRAPH 2), where the 'confidence curve' followed the mean fairly closely.

GRAPH 3

THEOPHYLLINE PLASMA LEVELS AGAINST TIME:
MEANS AND 90% CONFIDENCE LIMITS:
EUPHYLLIN RETARD
(2 X 350 mg tablets: 562.2 mg theophylline equivalent)

GRAPH 4

THEOPHYLLINE PLASMA LEVELS AGAINST TIME:
MEANS AND 90% CONFIDENCE LIMITS:
MICRO-PHYLLIN (2X250 mg capsules: 500 mg theophylline)

GRAPH 5

THEOPHYLLINE PLASMA LEVELS AGAINST TIME:
MEANS AND 90% CONFIDENCE LIMITS:
PHYLLOCONTIN
(2 X 225 mg tablets: 364.4 mg theophylline equivalent)

GRAPH 6

THEOPHYLLINE PLASMA LEVELS AGAINST TIME:
MEANS AND 90% CONFIDENCE LIMITS:
THEO-DUR
(2 X 200 mg tablets: 400 mg theophylline)

1. **Euphyllin Retard** (GRAPH 3): The confidence limits are extremely wide and variable around the mean, which demonstrates lack of uniformity from subject to subject.

2. **Microphyllin** (GRAPH 4): The confidence curve followed the mean but was fairly wide.

3. **Phyllocontin** (GRAPH 5): The curve was variable, but closer to the mean than in the 2 previous cases.

4. **Theo-Dur** (GRAPH 6): A slight mid-period dip is illustrated in this case. The confidence curve follows the
Product-to-product differences

mean and remains close to it, which exhibits uniformity among subjects.

DISCUSSION

This study has clearly demonstrated an inequivalence among prolonged-action theophylline preparations, in both drug levels achieved and predictability. In general terms Micro-Phyllin exhibited high levels with the lower doses of Phyllocontin and Theo-Dur giving expected lower levels. Hence, therapeutic drug monitoring and appropriate dosage adjustments could be expected to produce a favourable response with these 3 products. The situation is entirely different with Euphyllin Retard which showed great variation around generally unacceptably-low mean drug levels (in relation to dose), ie the product did not exhibit satisfactory plasma concentrations or predictability.

ACKNOWLEDGEMENT

I acknowledge assistance from Beverley Summers, School of Pharmacy, Medunsa; Sister KP Dali, MM Fata, Dr N Manyane, AS Modipane, Sister GC Modiselle, E Mogase, all of the Department of Pharmacology and Therapeutics, MEDUNSA.

REFERENCES

Accounting for INCOME

Concentrate on patient care without losing control of the business aspects of medical practice.

Knowing what's going on financially in your practice has never been more important. Inflation, high interest rates and patients not timely paying their accounts can seriously impact your practice. Manual accounting methods and computer bureaux have severe limitations in the complex environment of contemporary practice. The Practice Management System provides computerised practice accounting and allows medical practitioners to concentrate on patient care whilst administrative chores are automated. For as little as a tax deductible R400 per month you can computerise your practice today. The Practice Management System is easy to use, accommodates the latest legislation, reduces month end workload, provides state of the art 'convenience' features and comprehensive information available on demand.

Making your plans come together—Call Vickie on (011)783-8940