After good quality data is collected either through a routine surveillance system, survey, or clinical research it is important that this data is analysed and presented in a way that can lead to improved patient management or public health action. A table is simply a standard way of arranging a set of data into rows and columns and a good starting point for preparing powerful visual displays of data, such as graphs and charts, where some of the detail of the data may be lost. If the amount of data is small and relationships are simple, a table may be all that is needed. Therefore, in preparing tables, it is important to keep in mind that their primary purpose is to "communicate" information about the data and that, almost any quantitative information can be organised into tables.

There are two golden rules that govern the preparation of a table namely:

- It must be as "simple as possible" and
- It must be able to "stand-alone".

Compliance with the first rule ensures that the data is communicated unambiguously. It is always preferable to have two or three small tables each focusing on a different aspect of the data, than a single large table that contains many details or variables. Care in observing the "stand-alone rule" guarantees that when a table is taken out of its original context, which often happens, it will still convey all the information necessary for the reader to understand the data. There are a number of features that a good table must demonstrate and these include the following:

- A clear concise title that describes the "what, where, and when" of the data in the table and this should be preceded by the table number.
- Each row and each column should be clearly labelled and include the units of measurement.
- Totals for rows and columns should be shown and, if percentages are given, their totals should add up to 100%.
- Always note any exclusions, e.g. cases lost to follow-up, in a footnote.
- Always explain any codes, abbreviations, or symbols used in the table in a footnote.
- If the data are not original, note their source in the footnote.

The most basic table is a simple frequency distribution with only one variable. Table I summarises the use of malaria chemoprophylaxis among 7310 overnight visitors to the Kruger National Park, South Africa during April 1996. In this form of table, the first column lists the values or categories of the variable represented by the data, i.e. various chemoprophylactic regimens. The second column indicates the number of persons or events that fall into each category. Often, a third column provides the percentage of persons or events in each category, as in this example. Although the percentages may add up to a little above or below 100% due to rounding to one decimal place, the total is usually given as 100%. A footnote explaining that the difference is due to rounding can be included.

Data can also be cross-tabulated to show counts by a second variable. Table II shows immunisation coverage with the various Expanded Programme on Immunisation antigens in
The primary purpose of tables in articles is to present information in an organized manner. When attempting to include complex information in a single table, you should make sure it is not too busy and that it is the maximum amount of information that can be included.

Two-variable tables are sometimes known as "contingency" tables. The simplest form of contingency table is a "two-by-two" table because each of the two variables has two categories. These tables are used for calculating measures of association and performing tests of statistical significance such as the chi-square test. Sometimes, a third variable may be included in a table to display additional information.

Two-variable tables are sometimes known as "contingency" tables. The simplest form of contingency table is a "two-by-two" table because each of the two variables has two categories. These tables are used for calculating measures of association and performing tests of statistical significance such as the chi-square test. Sometimes, a third variable may be included in a table to display additional information.

Two-variable tables are sometimes known as "contingency" tables. The simplest form of contingency table is a "two-by-two" table because each of the two variables has two categories. These tables are used for calculating measures of association and performing tests of statistical significance such as the chi-square test. Sometimes, a third variable may be included in a table to display additional information.

Two-variable tables are sometimes known as "contingency" tables. The simplest form of contingency table is a "two-by-two" table because each of the two variables has two categories. These tables are used for calculating measures of association and performing tests of statistical significance such as the chi-square test. Sometimes, a third variable may be included in a table to display additional information.

Two-variable tables are sometimes known as "contingency" tables. The simplest form of contingency table is a "two-by-two" table because each of the two variables has two categories. These tables are used for calculating measures of association and performing tests of statistical significance such as the chi-square test. Sometimes, a third variable may be included in a table to display additional information.

Two-variable tables are sometimes known as "contingency" tables. The simplest form of contingency table is a "two-by-two" table because each of the two variables has two categories. These tables are used for calculating measures of association and performing tests of statistical significance such as the chi-square test. Sometimes, a third variable may be included in a table to display additional information.

Two-variable tables are sometimes known as "contingency" tables. The simplest form of contingency table is a "two-by-two" table because each of the two variables has two categories. These tables are used for calculating measures of association and performing tests of statistical significance such as the chi-square test. Sometimes, a third variable may be included in a table to display additional information.

Two-variable tables are sometimes known as "contingency" tables. The simplest form of contingency table is a "two-by-two" table because each of the two variables has two categories. These tables are used for calculating measures of association and performing tests of statistical significance such as the chi-square test. Sometimes, a third variable may be included in a table to display additional information.

Two-variable tables are sometimes known as "contingency" tables. The simplest form of contingency table is a "two-by-two" table because each of the two variables has two categories. These tables are used for calculating measures of association and performing tests of statistical significance such as the chi-square test. Sometimes, a third variable may be included in a table to display additional information.

Two-variable tables are sometimes known as "contingency" tables. The simplest form of contingency table is a "two-by-two" table because each of the two variables has two categories. These tables are used for calculating measures of association and performing tests of statistical significance such as the chi-square test. Sometimes, a third variable may be included in a table to display additional information.

Two-variable tables are sometimes known as "contingency" tables. The simplest form of contingency table is a "two-by-two" table because each of the two variables has two categories. These tables are used for calculating measures of association and performing tests of statistical significance such as the chi-square test. Sometimes, a third variable may be included in a table to display additional information.

Two-variable tables are sometimes known as "contingency" tables. The simplest form of contingency table is a "two-by-two" table because each of the two variables has two categories. These tables are used for calculating measures of association and performing tests of statistical significance such as the chi-square test. Sometimes, a third variable may be included in a table to display additional information.

Two-variable tables are sometimes known as "contingency" tables. The simplest form of contingency table is a "two-by-two" table because each of the two variables has two categories. These tables are used for calculating measures of association and performing tests of statistical significance such as the chi-square test. Sometimes, a third variable may be included in a table to display additional information.

Two-variable tables are sometimes known as "contingency" tables. The simplest form of contingency table is a "two-by-two" table because each of the two variables has two categories. These tables are used for calculating measures of association and performing tests of statistical significance such as the chi-square test. Sometimes, a third variable may be included in a table to display additional information.